Abstract

Some passive sensors can provide only relative angles of a signal source. To obtain the signal source location, multiple passive sensors can be constructed into a passive sensor network through communication links. This paper investigates the source localization problem with angle-only measurements in three-dimensional space. First, we present an intersection localization method, which estimates the target position by minimizing the sum of distances between lines formed by angle-only measurements. It has the same target position estimate as the widely used least-squares (LS) method, but with a lower computational cost. Furthermore, considering the differences in measurement accuracy of sensors, the weighted least-squares (WLS) algorithm can achieve better localization performance than the LS method. Unfortunately, since the coefficient matrix and the noise vector are correlated, the WLS method is biased. The bias-compensation WLS (BCWLS) method is also presented in this paper to reduce the bias by estimating the correlation between the coefficient matrix and the pseudolinear noise vector. To evaluate the performance of the presented algorithms, numerical simulations are conducted, indicating that the superiority of the intersection localization method in computational cost and the superiority of the BCWLS method in localization accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call