Abstract

In Japan, the past few decades revealed the vulnerability of wood-framed residential buildings to strong earthquakes. The Kobe earthquake in 1995 caused tremendous loss of lives resulting from the collapse and damage of such structures that significantly affected economic condition. This disaster motivated many researchers to study the mechanisms of collapse of engineering structures in order to prevent further loss of lives in the future. In this paper, an innovative methodology in simulating the dynamic response of wood-framed buildings, for purposes of seismic performance assessment and retrofitting, is presented. The proposed method, which can simulate inelastic behavior of structures, is capable of showing realistic progressive collapse mechanisms and accurate seismic response of structures. The sequence of analyses and results in the form of computer animations are used to help building owners gain a better understanding of the seismic performance of their buildings before and after the structural reinforcement. Applications to real wood-framed residential buildings were used to show the effectiveness of the methodology in seismic performance assessment as well as retrofit plan development. Language: en

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.