Abstract
The lamina cribrosa (LC) is a connective tissue in the posterior eye with a complex mesh-like trabecular microstructure, through which all the retinal ganglion cell axons and central retinal vessels pass. Recent studies have demonstrated that changes in the structure of the LC correlate with glaucomatous damage. Thus, accurate segmentation and reconstruction of the LC is of utmost importance. This paper presents a new automated method for segmenting the microstructure of the anterior LC in the images obtained via multiphoton microscopy using a combination of ideas. In order to reduce noise, we first smooth the input image using a 4-D collaborative filtering scheme. Next, we enhance the beam-like trabecular microstructure of the LC using wavelet multiresolution analysis. The enhanced LC microstructure is then automatically extracted using a combination of histogram thresholding and graph-cut binarization. Finally, we use morphological area opening as a postprocessing step to remove the small and unconnected 3-D regions in the binarized images. The performance of the proposed method is evaluated using mutual overlap accuracy, Tanimoto index, F-score, and Rand index. Quantitative and qualitative results show that the proposed algorithm provides improved segmentation accuracy and computational efficiency compared to the other recent algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.