Abstract

A new flamelet model is developed to be used for subgrid modelling and coupled with the resolved flow description for turbulent combustion. The model differs from current models in several critical ways. (i) Non-premixed flames, premixed flames or multi-branched flame structures are determined rather than prescribed. (ii) The effects of shear strain and vorticity on the flames are determined. (iii) The strain rates and vorticity applied at the subgrid level are directly determined from the resolved-scale strain rates and vorticity without the use of a contrived progress variable. (iv) The flamelet model is three-dimensional without need for assuming axisymmetry or planar geometry. (v) The effect of variable density is addressed in the flamelet model. Solutions to the Navier–Stokes equations and the associated scalar equations governing the flamelet model are obtained without the boundary-layer approximation. By appropriate coordinate transformation, a similar solution is found for the rotational flamelet model, reducing it to a system of ordinary differential equations. Vorticity is shown to create a centrifugal force on the subgrid counterflow that modifies the molecular transport rates and burning rate. Sample computations of the rotational flamelet model without coupling to the resolved flow are presented first to demonstrate the importance of the new features of the model. Scaling laws are presented for relating strain rates and vorticity at the subgrid level to those quantities at the resolved-flow level for coupling with large-eddy simulations or the time-averaged mean-flow level for Reynolds-averaged flows. The time-averaged behaviour of a simple turbulent flow is resolved with coupling to the rotational flamelet model. Specifically, a two-dimensional, multicomponent, time-averaged planar shear layer with variable density and energy release is employed using a mixing-length description for the eddy viscosity. Needs for future study are identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.