Abstract

The Remeshing and Interpolation Technique with Small Strain (RITSS) approach has been developed to deal with 3-D geotechnical problems in this paper. Unstructured 20-node hexahedral element is found to work well for predicting collapse loads accurately for 3-D undrained geotechnical problems involving material incompressibility. Remeshing is automatically accomplished by ANSYS program. With remeshing and interpolation, small fluctuations appear in the load–deformation results. In order to minimize these fluctuations, different increment sizes and remeshing frequencies are explored. Meanwhile, various 3-D interpolation methods are compared, and the unique element division method is found to work best. The results of two numerical applications are presented for a 3-D strip footing penetrating deeply into uniform clay and a square foundation into normally consolidated clay. The computed bearing capacity responses are compared with other numerical or conventional results. The results show that the present method is accurate and efficient for 3-D large displacement foundation penetration problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.