Abstract

In this paper, we present a comprehensive model to address three-dimensional resource assignment (3D-RA) in space division multiplexing elastic optical networks using few-mode multi-core fibers (FM-MCFs). Accordingly, we present new 3D-RA algorithms in which the consequential resources include the spectrum, modes, and cores. We consider all spectral and spatial diversity types in FM-MCFs and introduce five 3D-RA scenarios including (i) single-mode and single-core (SMSC), (ii) single-mode and multi-core (SMMC), (iii) multi-mode and single-core (MMSC), (iv) multi-mode and multi-core (MMMC), and finally, (v) hybrid 3D-RA. In each scenario, the fractional joint (FrJ-) and independent (Ind-) switching (Sw) schemes are introduced and explored for the proposed scenarios. By using the FrJ- and Ind-Sw schemes, we performed the simulation process for the above-mentioned scenarios. The simulation results confirm the efficiency of the proposed 3D-RA algorithms. Furthermore, various 3D-RA scenarios are comprehensively compared using the obtained results in terms of vital metrics introduced in this work. It is also indicated that the SMSC and MMSC scenarios present superior performance for Ind-Sw and FrJ-Sw 3D-RA scenarios, respectively, in comparison to other proposed non-hybrid scenarios. The obtained results also reveal that the quad-hybrid 3D-RA scenario results in the lowest blocking probability in comparison with all other introduced scenarios in both switching schemes. These results recommend an efficient simulation system for compatible transceivers for Ind- and FrJ-Sw schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.