Abstract

The design of biomaterial surfaces relies heavily on the ability to accurately measure and visualize the three-dimensional surface nanoarchitecture of substrata. Here, we present a technique for producing three-dimensional surface models using displacement maps that are based on the data obtained from two-dimensional analyses. This technique is particularly useful when applied to scanning electron micrographs that have been calibrated using atomic force microscopy (AFM) roughness data. The evaluation of four different surface types, including thin titanium films, silicon wafers, polystyrene cell culture dishes and dragonfly wings confirmed that this technique is particularly effective for the visualization of conductive surfaces such as metallic titanium. The technique is particularly useful for visualizing surfaces that cannot be easily analyzed using AFM. The speed and ease with which electron micrographs can be recorded, combined with a relatively simple process for generating displacement maps, make this technique useful for the assessment of the surface topography of biomaterials.

Highlights

  • Advances in microscopic technology have revolutionized the way objects can be perceived on the nanoscale

  • Given that most scanning electron microscope (SEM) systems produce greyscale images by default, electron micrographs are a prime candidate for the production of displacement maps, and when coupled with an appropriate height calibration procedure, 3D models can be produced for a surface that contain relatively accurate height values

  • Visualization of titanium surfaces Three-dimensional displacement maps were successfully applied to scanning electron micrographs of the surface of 150 nm-thick sputter-coated titanium films, at 30000×, 70000×, 90000× and 150000× magnifications (Figure 3, Additional file 1)

Read more

Summary

Introduction

Advances in microscopic technology have revolutionized the way objects can be perceived on the nanoscale Powerful instruments such as the scanning electron microscope (SEM) provide the ability to rapidly characterize samples using high magnification, producing two-dimensional (2D) image representation of the samples (Cizmar et al, 2008; Schatten, 2011), making it highly a suitable analytical technique in both biological and materials sciences (Coelho et al, 2009; Kang et al, 2009). Atomic force microscopy (AFM) is Displacement maps are commonly used for the application of high-resolution information using low-resolution models (Szirmay-Kalos and Umenhoffer, 2008; Lu et al, 2009; Jang and Han, 2012) These maps are based on gray scale (alpha) information, and as such they allow the transformation or deformation of 3D objects according to information collected from 2D images, where black represents the lowest point in space and white represents the highest point (Figure 1). Given that most SEM systems produce greyscale images by default, electron micrographs are a prime candidate for the production of displacement maps, and when coupled with an appropriate height calibration procedure, 3D models can be produced for a surface that contain relatively accurate height values

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.