Abstract
The drive towards increased energy efficiency and reduced air pollution has led to accelerated worldwide development of fuel cells. As the performance and cost of fuel cells have improved, the materials comprising them have become increasingly sophisticated, both in composition and microstructure. In particular, state-of-the-art fuel-cell electrodes typically have a complex micro/nano-structure involving interconnected electronically and ionically conducting phases, gas-phase porosity, and catalytically active surfaces. Determining this microstructure is a critical, yet usually missing, link between materials properties/processing and electrode performance. Current methods of microstructural analysis, such as scanning electron microscopy, only provide two-dimensional anecdotes of the microstructure, and thus limited information about how regions are interconnected in three-dimensional space. Here we demonstrate the use of dual-beam focused ion beam-scanning electron microscopy to make a complete three-dimensional reconstruction of a solid-oxide fuel-cell electrode. We use this data to calculate critical microstructural features such as volume fractions and surface areas of specific phases, three-phase boundary length, and the connectivity and tortuosity of specific subphases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.