Abstract
An estimation approach to three-dimensional reconstruction from parallel ray projections, with incomplete and very noisy data, is described. Using a stochastic dynamic model for an object of interest in a probed domain of known background density, the reconstruction problem is reformulated as a n onlinear state estimation problem. An approximate minimum mean square error globally optimal algorithm for the solution of this problem is presented. The algorithm, which is recursive in a hybrid frequency-space domain, operates directly on the Fourier transformed projection data, eliminating altogether the attempt to invert the projection integral equation. The simulation example considered in this paper demonstrates that good object estimates may be obtained with as few as five views in a limited sector of 90° and at a signal-to-noise ratio as low as 0 dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Acoustics, Speech, and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.