Abstract

Despite its two-dimensional nature, X-ray angiography (XRA) has served as the gold standard imaging technique in the interventional cardiology for over five decades. Accordingly, demands for tools that could increase efficiency of the XRA procedure for the quantitative analysis of coronary arteries (CA) are constantly increasing. The aim of this study was to propose a novel procedure for three-dimensional modeling of CA from uncalibrated XRA projections. A comprehensive mathematical model of the image formation was developed and used with a robust genetic algorithm optimizer to determine the calibration parameters across XRA views. The frames correspondences between XRA acquisitions were found using a partial-matching approach. Using the same matching method, an efficient procedure for vessel centerline reconstruction was developed. Finally, the problem of meshing complex CA trees was simplified to independent reconstruction and meshing of connected branches using the proposed nonuniform rational B-spline (NURBS)-based method. Because it enables structured quadrilateral and hexahedral meshing, our method is suitable for the subsequent computational modelling of CA physiology (i.e. coronary blood flow, fractional flow reverse, virtual stenting and plaque progression). Extensive validations using digital, physical, and clinical datasets showed competitive performances and potential for further application on a wider scale.

Highlights

  • Coronary arteries (CA) are small and dynamic vessels that branch from the aorta and supply myocardium with oxygen-rich blood

  • X-ray angiography (XRA) has facilitated many of the catheter-based cardiovascular procedures developed in the

  • Since the proposed framework integrates several steps and aims to deliver surfaces, we preferred measuring the deviation of the obtained coronary arteries (CA) surface geometry from its corresponding ground truth

Read more

Summary

Introduction

Coronary arteries (CA) are small and dynamic vessels that branch from the aorta and supply myocardium with oxygen-rich blood. According to the clinical reports, coronary artery disease (CAD) represents leading cause of death in the developed world. CAD features CA wall stiffening and lumen narrowing, which may be diagnosed using various imaging modalities. Despite its invasiveness and two-dimensional nature, X-ray angiography (XRA) has served as the gold standard technique in interventional cardiology for over five decades. There are increasing needs for tools that could enable accurate 3D quantification of CAD using the standard monoplane (when at least two views are available) and biplane (two views are acquired simultaneously) XRA devices. Typical XRA device consists of the X-ray source ( F ) and the image detector ( O ) mounted on the mobile. C-arm that can be rotated around an object, which is placed on the mobile patient table and subjected for the imaging.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.