Abstract

In this study, a previously developed reconstruction methodology is extended to three-dimensional reconstruction of a three-phase microstructure, based on two-point correlation functions and two-point cluster functions. The reconstruction process has been implemented based on hybrid stochastic methodology for simulating the virtual microstructure. While different phases of the heterogeneous medium are represented by different cells, growth of these cells is controlled by optimizing parameters such as rotation, shrinkage, translation, distribution and growth rates of the cells. Based on the reconstructed microstructure, finite element method (FEM) was used to compute the effective elastic modulus and effective thermal conductivity. A statistical approach, based on two-point correlation functions, was also used to directly estimate the effective properties of the developed microstructures. Good agreement between the predicted results from FEM analysis and statistical methods was found confirming the efficiency of the statistical methods for prediction of thermo-mechanical properties of three-phase composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.