Abstract

Two and three magnetic flux ropes are created and studied in a well-diagnosed laboratory experiment. The twisted helical bundles of field lines rotate and collide with each other over time. In the two rope case, reverse current layers indicative of reconnection are observed. Using a high spatial and temporal resolution three-dimensional volume data set in both cases, quasi-separatrix layers (QSLs) are identified in the magnetic field. Originally developed in the context of solar magnetic reconnection, QSLs are thought to be preferred sites for reconnection. This is verified in these studies. In the case of three flux ropes there are multiple QSLs, which come and go in time. The divergence of the field lines within the QSLs and the field line motion is presented. In all cases, it is observed that the reconnection is patchy in space and bursty in time. Although it occurs at localized positions it is the result of the nonlocal behavior of the flux ropes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.