Abstract
Quantitative structure-activity relationship models on the gas chromatographic retention index of the 38 volatile fragrance compounds of Liliumspp were investigated and established by comparative molecular field analysis (CoMFA) and comparative molecular similarity index (CoMSIA) methods. The robustness and predictive performance of the developed models were assessed using external test set validation and leave-one-out cross validation. Further, the effects of the molecular structure on the gas chromatographic retention indices of these compounds were intuitively studied in light of the three-dimensional contour maps of molecular fields provided by the developed CoMSIA and CoMFA models. The validation results demonstrated that both the models could accurately predict the retention indices of the investigated components. The influence of the molecular structure on the retention indices could be reasonably explained by these models. Moreover, the prediction accuracy of the CoMSIA model was slightly higher than that of the CoMFA model. Obviously, the proposed CoMSIA model is more promising for the analysis of the volatile fragrance compounds of Lilium spp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.