Abstract
The field of three-dimensional quantitative phase imaging (3D QPI) is expanding rapidly with applications in biological, medical, and industrial research, development, diagnostics, and metrology. Much of this research has centered on developing optical diffraction tomography (ODT) for biomedical applications. In addition to technical difficulties associated with coherent noise, ODT is not congruous with optical microscopy utilizing partially coherent light, which is used in most biomedical laboratories. Thus, ODT solutions have, for the most part, been limited to customized optomechanical systems which would be relatively expensive to implement on a wide scale. In the present work, a new phase reconstruction method, called tomographic deconvolution phase microscopy (TDPM), is described which makes use of commercial microscopy hardware in realizing 3D QPI. TDPM is analogous to methods used in deconvolution microscopy which improve spatial resolution and 3D-localization accuracy of fluorescence micrographs by combining multiple through-focal scans which are deconvolved by the system point spread function. TDPM is based on the 3D weak object transfer function theory which is shown here to be capable of imaging "nonweak" phase objects with large phase excursions. TDPM requires no phase unwrapping and recovers the entire object spectrum via object rotation, mitigating the need to fill in the "missing cone" of spatial frequencies algorithmically as in limited-angle ODT. In the present work, TDPM is demonstrated using optical fibers, including single-mode, polarization-maintaining, and photonic-crystal fibers as well as an azimuthally varying CO2-laser-induced long-period fiber grating period as test phase objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.