Abstract

This letter proposes an optimal nondestructive subsurface defect detection method to investigate the capabilities of the infrared thermography through a finite-element analysis-based model. A finite-element analysis (FEA) software was used to generate models and analysis was carried out using MATLAB software. Pulse compression approach has been introduced for subsurface defect detection and its advantages and limitations are compared with existing phase approach-based thermography. Investigations has been carried out on a simulated plain carbon steel specimen with a flat bottom hole defects at various depths of different diameters is introduced. Comparison has been made with the conventional phase-based techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.