Abstract
Abstract We present a case study for the global extreme-ultraviolet (EUV) wave and its chromospheric counterpart the Moreton-Ramsey Wave associated with the second X-class flare in Solar Cycle 25 and a halo coronal mass ejection (CME). The EUV wave was observed in the Hα and EUV passbands with different characteristic temperatures. In the 171 Å and 193/195 Å images, the wave propagates circularly with an initial velocity of 600–720 km s−1 and a deceleration of 110–320 m s−2. The local coronal plasma is heated from log(T/K) ≈ 5.9 to log(T/K) ≈ 6.2 during the passage of the wave front. The Hα and 304 Å images also reveal signatures of wave propagation with a velocity of 310–540 km s−1. With multiwavelength and dual-perspective observations, we found that the wave front likely propagates forwardly inclined to the solar surface with a tilt angle of ∼53°.2. Our results suggest that this EUV wave is a fast-mode magnetohydrodynamic wave or shock driven by the expansion of the associated CME, whose wave front is likely a dome-shaped structure that could impact the upper chromosphere, transition region, and corona.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.