Abstract

The magnetic configuration hosting prominences and their surrounding coro- nal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an es- sential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the main polarities and converging flows towards the polarity inversion line near the bottom of the corona. The con- verging flows bring feet of different loops together at the polarity inversion line and magnetic reconnection and flux cancellation happens. Inflow and outflow signatures of the magnetic reconnection process are identified, and the thereby newly formed helical loops wind around pre-existing ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines which can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5.e14 g.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call