Abstract

Hexagonal boron nitride (hBN) is a thermally conductive yet electrically insulating two-dimensional layered nanomaterial that has attracted significant attention as a dielectric for high-performance electronics in addition to playing a central role in thermal management applications. Here, we report a high-content hBN-polymer nanocomposite ink, which can be 3D printed to form mechanically robust, self-supporting constructs. In particular, hBN is dispersed in poly(lactic- co-glycolic acid) and 3D printed at room temperature through an extrusion process to form complex architectures. These constructs can be 3D printed with a composition of up to 60% vol hBN (solids content) while maintaining high mechanical flexibility and stretchability. The presence of hBN within the matrix results in enhanced thermal conductivity (up to 2.1 W K-1 m-1) directly after 3D printing with minimal postprocessing steps, suggesting utility in thermal management applications. Furthermore, the constructs show high levels of cytocompatibility, making them suitable for use in the field of printed bioelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.