Abstract

For more than a decade, 3-dimensional (3D) printing has been identified as an innovative tool for the surgical planning of double-outlet right ventricle (DORV). Nevertheless, lack of evidence concerning its benefits encourages us to identify valuable criteria for future prospective trials. We conducted a retrospective study involving 10 patients with DORV operated between 2015 and 2019 in our center. During a preoperative multidisciplinary heart team meeting, we harvested surgical decisions following a 3-increment step process: (1) multimodal imaging; (2) 3D virtual valvular reconstruction (3DVVR); and (3) 3D-printed heart model (3DPHM). The primary outcome was the proportion of predicted surgical strategy following each of the 3 steps, compared with the institutional retrospective surgical strategy. The secondary outcome was the change of surgical strategy through 3D modalities compared with multimodal imaging. The incremental benefit of the 3DVVR and 3DPHM over multimodal imaging was then assessed. The operative strategy was predicted in 5 cases after multimodal imaging, in 9 cases after 3DVVR, and the 10 cases after 3DPHM. Compared with multimodal imaging, 3DVVR modified the strategy for 4 cases. One case was correctly predicted only after 3DPHM inspection. 3DVVR and 3DPHM improved multimodal imaging in the surgical planning of patients with DORV. 3DVVR allowed a better appreciation of the relationships between great vessels, valves, and ventricular septal defects. 3DPHM offers a realistic preoperative view at patient scale and enhances the evaluation of outflow tract obstruction. Our retrospective study demonstrates benefits of preoperative 3D modalities and supports future prospective trials to assess their impact on postoperative outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.