Abstract
Three-dimensional (3D) printing, as an advanced additive manufacturing technique, is emerging as a promising material-processing approach in the electrical energy storage and conversion field, e.g., electrocatalysis, secondary batteries and supercapacitors. Compared to traditional manufacturing techniques, 3D printing allows for more the precise control of electrochemical energy storage behaviors in delicately printed structures and reasonably designed porosity. Through 3D printing, it is possible to deeply analyze charge migration and catalytic behavior in electrocatalysis, enhance the energy density, cycle stability and safety of battery components, and revolutionize the way we design high-performance supercapacitors. Over the past few years, a significant amount of work has been completed on 3D printing to explore various high-performance energy-related materials. Although impressive strides have been made, challenges still exist and need to be overcome in order to meet the ever-increasing demand. In this review, the recent research progress and applications of 3D-printed electrocatalysis materials, battery components and supercapacitors are systematically presented. Perspectives on the prospects for this exciting field are also proposed with applicable discussion and analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.