Abstract

Wettability of artificial surfaces is attracting increasing attention for its relevant technological applications. Functional performance is often achieved by mimicking the topographical structures found in natural flora and fauna; however, surface attributes inspired by geological landscapes have so far escaped attention. We reproduced a stratified morphology of plateaus with a bi-Gaussian height distribution using a three-dimensional direct laser lithography. The plateau-inspired artificial surface exhibits a hydrophobic behavior even if fabricated from a hydrophilic material, giving rise to a new wetting mechanism that divides the well-known macroscopic Wenzel and Cassie states into four substates. We have also successfully applied the plateau-inspired structure to droplet manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call