Abstract

The present investigation tested the effect of cleaning methods and adhesives on the tensile bond strength (TBS) of a resin-based composite luted to a temporary 3D printed resin. Substrates (n= 360) were printed using a Rapidshape D20II and cleaned with a butyldiglycol-based solution, isopropanol, or by centrifugation. Specimens were air-abraded with Al2O3 (mean particle size 50 µm) at 0.1 MPa followed by pretreatment (n = 30/subgroup) with: (1) Clearfil Ceramic Primer (CCP); (2) Clearfil Universal Bond (CUB); (3) Scotchbond Universal Plus (SUP) or 4. Visio.link (VL) and luted to PanaviaV5. TBS (n = 15/subgroup) was measured initially (24 h at 37 °C water) or after thermal cycling (10,000×, 5/55 °C). The degree of conversion (DC) for each cleaning method was determined prior and after air-abrasion. Univariate ANOVA followed by post-hoc Scheffé test was computed (p < 0.05). Using Ciba-Geigy tables and chi-square, failure types were analyzed. The DC values were >85% after all cleaning methods, with centrifugation showing the lowest. CCP pretreatment exhibited the lowest TBS values, with predominantly adhesive failures. The combination of CCP and centrifugation increased the TBS values (p < 0.001) compared to the chemical cleaning. CUB, SUP, and VL, regardless of cleaning, can increase the bond strength between the 3D printed resin and the conventional luting resin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call