Abstract
We aimed to develop a process using three-dimensional (3D) printing to create bioengineered tracheal grafts (BETGs) for reconstruction of anterior tracheal defects in a large-animal model (porcine) that would have translational relevance for potential human use. Preoperative computed tomographic scans were used to create virtual 3D models of the animal airways. Anatomically scaled tracheal grafts were subsequently developed using 3D-printed polycaprolactone and extracellular matrix. A 4-cm anterior tracheal defect (about 50% ofthe length of the subject trachea) was surgically created in 4-week-old female Yorkshire pigs and reconstructed using the customized grafts. Gross and microscopic analyses of the grafts were performed. The BETGs were implanted in 7 animals. There was adequate graft-native trachea size match at the operation. The trachea was successfully reconstructed inall cases. Gross examination at autopsy showed a structurally intact, well-incorporated graft. Histologic evaluation showed respiratory mucosal coverage and vascularity of the graft. Five of 7 animals outlived the 3-month study period. The animals had approximately 100% growth during the study period. We report of a 3D-printed BETG to repair long-segment anterior tracheal defects in a large-animal model. Although the study duration is short, this work presents an efficient strategy for tracheal graft bioengineering with potential translational relevance for human use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.