Abstract

Nowadays, researchers are very interested to investigate the dynamic behavior of the thin-walled structures during the machining process due to their broad application in aerospace, automotive industries and etc. One of the main problems in machining of thin-walled structures is unstable chatter vibrations, which causes the poor machined surface quality and decreases the system life span. In this regard, the main aim of this paper is to propose a practical method to solve the chatter instability problem during the milling process of thin-walled components. To this end, first the effects of geometrical parameters like workpiece height, thickness, and tool overhang, diameter and their ratios on the chatter stability are investigated. Then three dimensional stability lobe diagrams (SLDs) base on the mentioned parameters are presented for the first time. In which one can implement the mentioned diagrams to switch the unstable machining process to stable one by changing the value of the system parameters. Finally, the results obtained by the experimental test show that the presented three dimensional diagrams can be utilized to avoid chatter instability in the milling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.