Abstract

AbstractRedox‐active polymers (RAPs) are promising organic electrode materials for affordable and sustainable batteries due to their flexible chemical structures and negligible solubility in the electrolyte. Developing high‐dimensional RAPs with porous structures and crosslinkers can further improve their stability and redox capability by reducing the solubility and enhancing reaction kinetics. This work reports two three‐dimensional (3D) RAPs as stable organic cathodes in Na‐ion batteries (NIBs) and K‐ion batteries (KIBs). Carbonyl functional groups are incorporated into the repeating units of the RAPs by the polycondensation of Tetrakis(4‐aminophenyl)methane and two different dianhydrides. The RAPs with interconnected 3D extended conjugation structures undergo multi‐electron redox reactions and exhibit high performance in both NIBs and KIBs in terms of long cycle life (up to 8000 cycles) and fast charging capability (up to 2 A g−1). The results demonstrate that developing 3D RAPs is an effective strategy to achieve high‐performance, affordable, and sustainable NIBs and KIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call