Abstract

Submarine pipelines can utilize sleepers to control global buckling location, which mitigates potential risks under high temperature and pressure. However, pipelines with sleepers require execution in three-dimensional space and experience lateral buckling modes. As such, this paper proposes a 3D pipeline element for lateral buckling analysis, building on previous 2D element formulations. This new element considers non-linear pipe-soil interactions, thermal expansion, axial load, initial imperfections, large deflection, and other major factors that affect lateral buckling. The derivations of the 3D pipeline element are provided in detail, and the numerical analysis procedure is elaborated. To validate the accuracy and efficiency of the proposed 3D pipeline element, several examples are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call