Abstract

In this paper, we propose an in vitro patient-tailored biological model of human cerebral artery, a novel hardware platform for simulating endovascular intervention, in purpose of diagnosis, presurgical simulation and medical training. Proposed biological model precisely reproduces 3-dimensional configuration of vasculature lumen within vasculature-like thin uniform membrane made of silicon elastomer that provides material property closest to arterial tissue (as to elasticity and surface friction). With this patient-tailored precise vasculature model, then we propose a novel technique to visualize and to analyze 3-dimensional stress distribution over 3-dimensional membranous vasculature structure, which arise from surgical treatments or pulsatile blood streaming, using photoelastic stress analysis. Although photoelastic analysis is generally effective only for 2-dimensional problems, we adapted it to our 3-dimensional problem by making use of vasculature-like thin membranous configuration of proposed biological model. Stress distribution is dearly observed at its fringe as rainbow-colored photoelastic stress pattern. Consequently, proposed patient-tailored biological model should be useful for a wide range of applications, such as hemodynamic study and evaluation of medical devices, as well as surgical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.