Abstract
Coherent modulation imaging is a lensless imaging technique, where a complex-valued image can be recovered from a single diffraction pattern using the iterative algorithm. Although mostly applied in two dimensions, it can be tomographically combined to produce three-dimensional (3D) images. Here we present a 3D reconstruction procedure for the sample's phase and intensity from coherent modulation imaging measurements. Pre-processing methods to remove illumination probe, inherent ambiguities in phase reconstruction results, and intensity fluctuation are given. With the projections extracted by our method, standard tomographic reconstruction frameworks can be used to recover accurate quantitative 3D phase and intensity images. Numerical simulations and optical experiments validate our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.