Abstract

Finger tapping test is an important neuropsychological test to evaluate human motor function. Most recent researches simplified the finger tapping motion as a scissors-like motion, though the rotation axis of the thumb was different from that of the forefinger. In this paper, we proposed a three-dimensional (3-D) finger tapping measurement system to obtain 3-D pattern features in finger tapping test for patients with Parkinson's disease (PD). The proposed system collected the motion of the thumb and the forefinger by nine-degrees-freedom sensors and calculated 3-D motion of finger tapping by an orientation estimation method and a 3-D finger-tapping kinematic model. We further extracted 3-D pattern features, i.e. motor coordination and relative thumb motion, from 3-D Finger Tapping motion. Moreover, we used the proposed system to collect the finger-tapping motion of 43 PD patients and 30 healthy controls in horizontal tasks and vertical tasks. The results indicated that 3-D pattern features showed a better performance than one-dimensional features in the identification of mild PD patients.Clinical Relevance- These three-dimensional pattern features could be used to evaluate finger tapping motion in a novel way, which could be used to better identify mild Parkinson's disease patients. Furthermore, the results showed that a combination of horizontal tasks and vertical tasks might be a better way to identify mild Parkinson's disease patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call