Abstract
Generation of anomalous resistivity and dynamical development of collisionless reconnection in the vicinity of a magnetically neutral sheet are investigated by means of a three-dimensional particle simulation. For no external driving source, two different types of plasma instabilities are excited in the current layer. The lower hybrid drift instability (LHDI) is observed to grow in the periphery of current layer in an early period, while a drift kink instability (DKI) is triggered at the neutral sheet in a late period as a result of the nonlinear deformation of the current sheet by the LHDI. A reconnection electric field grows at the neutral sheet in accordance with the excitation of the DKI. When an external driving field exists, the convective electric field penetrates into the current layer through the particle kinetic effect and collisionless reconnection is triggered by the convective electric field earlier than the DKI is excited. It is also found that the anisotropic ion distribution is formed through the anomalous ion heating by the DKI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.