Abstract

Numerical simulations were performed with a parallel computer to solve for the behavior of a three-dimensional gas-solid two-phase detonation. The numerical method is a second-order modified Harten-Yee TVD upwind scheme and time integration uses a first order Euler integration. A two-step chemical reaction model represents the reaction of cornstarch-particles and oxygen. The numerical results show that a periodic two-headed detonation appears with a three-dimensional propagation mechanism before and after a triple point collisions. A comparison between the numerical and experimental results reveals that the detonation velocity of numerical results agrees well with that of experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.