Abstract
The near resonant response of suspended, elastic cables driven by planar excitation is investigated using a three degree-of-freedom model. The model captures the interaction of a symmetric in-plane mode with two out-of-plane modes. The modes are coupled through quadratic and cubic nonlinearities arising from nonlinear cable stretching. For particular magnitudes of equilibrium curvature, the natural frequency of the in-plane mode is simultaneously commensurable with the natural frequencies of the two out-of-plane modes in 1:1 and 2:1 ratios. A second nonlinear order perturbation analysis is used to determine the existence and stability of four classes of periodic solutions. The perturbation solutions are compared with results obtained by numerically integrating the equations of motion. Furthermore, numerical simulations demonstrate the existence of quasiperiodic responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.