Abstract

We have used a method for the two-dimensional crystallization of retroviral structural proteins to obtain a three-dimensional structure of negatively stained, membrane-bound, histidine-tagged Moloney murine leukemia virus (M-MuLV) capsid protein (his-MoCA) arrays. Tilted and untilted micrographs from crystals formed by purified his-MoCA proteins incubated beneath lipid monolayers containing nickel-chelating lipids were used in 3D reconstructions. The 2D crystals had unit cell dimensions of a=72.6 Å, b=72.5 Å and γ=119.5 °, but appeared to have no intrinsic symmetry (p1) in 3D, in contrast to the trigonal or hexagonal appearance of their 2D projections. Membrane-bound his-MoCA proteins showed a strand-like organization, apparently with dimer building blocks. Membrane-proximal regions, or putative N-terminal domains (NTDs), dimerized with different partners than the membrane-distal putative C-terminal domains (CTDs). Evidence also suggests that CTDs can adopt alternate orientations relative to their NTDs, forming interstrand connections. Our results are consistent with helical-spiral models for retrovirus particle assembly, but are not easily reconcilable with icosahedral models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.