Abstract
Precise and early screening of colorectal cancer (CRC) is one crucial yet challenging task for its treatment, and the analysis of multi-targets of CRC in a single assay with high accuracy is essential for pathological research and clinical diagnosis. Here, a CRC-related biomarker pair, microRNA-211 (miRNA-211) and H2S, was detected by constructing a three-dimensional (3D) ordered DNA network. First, trace amount of miRNA-211 could initiate a hybridization chain reaction-based amplification process. A highly ordered 3D DNA network was formed based on the organized assembly of DNA-cube frameworks that were constructed by DNA origamis and Ag nanoparticles (NPs) encapsulated inside. In the presence of the H2S, Ag NPs within the network can be etched to generate Ag2S quantum dots, which could be better visualized in fluorescence in situ cell imaging. Using the 3D DNA ordered network as the sensing platform, it can acquire dual analysis of biomolecule (miRNA-211) and inorganic gas (H2S) in vitro, overcoming the limitations of single type of biomarker detection in a single assay. This assay achieved a wide linearity range of H2S from 0.05 to 10 μM, and exhibited a low limit of detection of 4.78 nM. This strategy allows us to acquire the spatial distributions of H2S and miRNA expression levels in living CRC cells simultaneously, providing a highly sensitive and selective tool for early screening and monitoring of CRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.