Abstract

A global mathematical model for simultaneously obtaining the optimal layout and design of urban drainage systems for foul sewage and stormwater is presented. The model can handle every kind of network, including parallel storm and foul sewers. It selects the optimal location for pumping systems and outfalls or wastewater treatment plants (defining the natural and artificial drainage basins), and it allows the presence of special structures and existing subsystems for optimal remodeling or expansion. It is possible to identify two basic optimization levels: in the first level, the generation and transformation of general layouts (consisting of forests of trees) until a convergence criterion is reached, and in the second level, the design and evaluation of each forest. The global strategy adopted combines and develops a sequence of optimal design and plan layout subproblems. Dynamic programming is used as a very powerful technique, alongside simulated annealing and genetic algorithms, in this discrete combinatorial optimization problem of huge dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.