Abstract
In-plane anisotropic two-dimensional (2D) materials, especially black phosphorus and ReS2, have attracted significant interest recently as they can provide one more dimension to manipulate their physical properties when compared with isotropic 2D materials. As a representative anisotropic 2D material, germanium monosulfide (GeS) has emerged as a new research hot topic in this field because of its unique in-plane anisotropic physical properties. Despite the rapid growing progress in the study of GeS, many of their fundamental optical anisotropies are still absent. Here, we report the three-dimensional (3D) optical anisotropy of GeS from theory to experiment. The 3D optical anisotropic properties including extinction, refraction, absorption, and reflection were systematically investigated through density functional calculations. The anisotropic refraction and reflection of GeS were experimentally verified by polarization-resolved optical microscopy and azimuth-dependent reflectance difference microscopy, respectively. Finally, a GeS-based linear dichroic photodetector was demonstrated with a dichroic ratio of 1.45 because of its polarization sensitive absorption. Our results provide deep insights into the optical anisotropy of GeS, which is important for the further development of GeS-based optoelectronic and optical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.