Abstract

Massive slow-moving landslides often exhibit deformation patterns which vary spatially across the landslide mass and temporally with changing boundary conditions. Understanding the parameters controlling this behaviour, such as heterogeneous material properties, complex landslide geometry and the distribution of groundwater, is fundamental when making informed design and hazard management decisions. This paper demonstrates that significant improvements to the geomechanical analysis of massive landslides can be achieved through rigorous, three-dimensional numerical modelling. Simulations of the Downie Slide incorporate complex shear zone geometries, multiple water tables and spatial variation of shear zone stiffness parameters to adequately reproduce real slope behaviour observed through an ongoing site monitoring program. These three-dimensional models are not hindered by shortfalls typically associated with two-dimensional analysis, for example the ability to accommodate lateral migration of material, and they out-perform more simplified three-dimensional models where bowl-shaped shear geometries are incapable of reasonably reproducing observed deformation patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call