Abstract

A three-dimensional numerical simulation of the operation of an annular rotating-detonation chamber (RDC) with separate supply of combustible mixture components, hydrogen and air, is performed, and the calculation results are compared to available experimental data. The model is based on a system of time-dependent Reynolds-averaged Navier-Stokes equations complemented with a turbulence model and continuity and energy equations for a multicomponent reacting gas mixture. The system is solved using a coupled algorithm based on the finite volume method and particle method. Calculations are for the first time performed with allowance for effects of finite rates of turbulent and molecular mixing of the combustible mixture components with each other and with reaction and detonation products. The calculation results compare favorably with the experimental data obtained at the Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call