Abstract

Resin infusion (RI) process has been widely used for manufacturing composite parts. The variation of preform thickness brings great difficulty to the three-dimensional simulation of the filling stage. To accurately simulate the preform thickness change and resin flow during resin infusion, precise preform compaction models and dynamically changing geometry models need to be adopted. At present, resin flow is usually considered as two-dimensional and simple compaction models are employed to simplify the simulation, which degrades the prediction accuracy seriously. In this paper, general equations to describe the resin flow in the changing thickness cavity are developed, and the viscoelastic model is adopted which can fully express the dynamic characteristics of the preform compaction. To avoid solving the coupled resin flow/preform deformation equations directly, the volume of fluid method and the dynamic mesh model are employed to implement the tracking of the flow front and updating of cavity geometry model. The resin storage and release induced by porosity variations are adjusted by a master-slave element method to ensure mass conservation. Two simulation examples are carried out to demonstrate the capability of the above approach. The applicability of the approach on arbitrary complex domains and sequential injection strategy is also verified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.