Abstract

Based on detailed three-dimensional numerical simulation, creep crack growth behavior of C(T) specimen with different thicknesses of 316H steel was predicted using a stress-dependent creep ductility and strain rate model. Three regions were observed in the relation of creep crack growth rate versus fracture parameter C ∗ . The C(T) specimen with higher thickness exhibits higher CCG rate. The turning point 1 location from low C ∗ region to transition C ∗ region increases with increasing thickness, while that of turning point 2 seems to be independent of specimen thickness. Based on the finite element results, constraint-dependent turning point 1 location and creep crack growth rate equations were fitted. More accurate and realistic life assessment may be made when the stress-dependent model and the constraint effect were considered for creep life assessments of high-temperature components subjecting to a low applied load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.