Abstract

A three-dimensional physical and mathematical model of the lateral airflow for droplet breakup was established. Numerical simulation was used to study the impact of the pulsating airflow on the droplet breakup process and analyze the variation in deformation rate under different amplitudes and frequencies. The results show that compared with uniform airflow, pulsating airflow can enhance the effect of droplet breakup, with an optimal droplet crushing effect occurring when the relative amplitude of the pulsating airflow was A = 1 and the Womersley number of the pulsating airflow was 96.6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.