Abstract

This paper presents a new numerical strategy for the design and verification of flexible falling rock barriers: passive protection measures for risk mitigation of potentially unstable rock slopes. The key point of the proposed approach is that notwithstanding the complexity of the simulated phenomenon, the resulting highly non-linear, dynamic model is simple and produces an accurate prediction of all the relevant parameters for barrier design, such as anchorage forces, net panel elongations and residual heights.The modelling procedure has been assessed using detailed experimental data obtained from a set of full-scale tests on three barrier prototypes with various energy absorption capacities (5000kJ, 3000kJ and 500kJ). By comparison with the experimental results, the numerical model has shown to be reliable in capturing very accurately the barrier response to a block impact. Consequently, this method can be extended to investigate the behaviour of flexible falling rock protection barriers under conditions different from those encountered in full-scale tests. Therefore, the numerical procedure can be regarded as an effective tool used for designing and testing these structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.