Abstract
This study presents a three-dimensional numerical model that simulates the H2 production from coal-derived syngas via a water-gas shift reaction in membrane reactors. The reactor was operated at a temperature of 900 °C, the typical syngas temperature at gasifier exit. The effects of membrane permeance, syngas composition, reactant residence time, sweep gas flow rate and steam-to-carbon (S/C) ratio on reactor performance were examined. Using CO conversion and H2 recovery to characterize the reactor performance, it was found that the reactor performance can be enhanced using higher sweep gas flow rate, membrane permeance and S/C ratio. However, CO conversion and H2 recovery limiting values were found when these parameters were further increased. The numerical results also indicated that the reactor performance degraded with increasing CO2 content in the syngas composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.