Abstract

Most natural rivers are curved channels, where the turbulent flows have a complex helical pattern, as has been extensively studied both numerically and experimentally. The helical flow structure in curved channels has an important bearing on sediment transport, riverbed evolution, and pollutant transport study. In this article, different turbulence closure schemes i.e., the mixing-length model and the k – ɛ model with different pressure solution techniques i. e., hydrostatic assumptions and dynamic pressure treatments are applied to study the helical secondary flows in an experiment curved channel. The agreements of vertically-averaged velocities between the simulated results obtained by using different turbulence models with different pressure solution techniques and the measured data are satisfactory. Their discrepancies with respect to surface elevations, superelevations and secondary flow patterns are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.