Abstract

Abstract In this work, a three-dimensional finite element flow analysis code is used to solve sequential co-injection molding problems. Non-Newtonian, non-isothermal flow solutions are obtained by solving the momentum, mass and energy equations. Two additional transport equations are solved for tracking polymer/air and skin/core polymers interfaces. Solutions are shown for a center gated rectangular plate. The effect of varying the melt/mold temperature and the ratio between the skin and core materials is investigated. The solution obtained for the same skin and core materials is compared with those in which viscosities of core and skin materials are much different. Finally, the solution for the co-injection of a C-shaped plate is presented. The three-dimensional modeling of co-injection molding provides the complete shape of the core polymer as well as the skin polymer thickness at any location. This is a major improvement over the traditional mid-plane approach, which is unable to recover the material behavior in critical regions as near corners, obstacles, and changes in part thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.