Abstract
This article reports numerical results investigating the damage evolution and spatial distribution characteristics of intact and jointed rockmass subjected to blast loading. The behaviors of rock material are described by the Holmquist- Johnson-Cook (HJC) constitutive model incorporated in the finite element software LS-DYNA. Results indicate that the damage distribution shows a reverse S-shape attenuation with the increase of the distance from borehole, and a better goodness of fit with the Logistic function is observed. In the single-hole blasting of jointed rockmass, there are two types of regions around the intersection of borehole and joint in which the damage degree is quite different. The crushing damage develops in a Ψ-shape path along the joint. In the radial direction, the crushing damage and cracking damage of rock show different distribution forms with the increase of joint dip angle. As for the double-hole blasting, due to the superposition of the blast waves, the damage degree in the region between the two boreholes of intact rockmass is significantly large. For jointed rockmass, the joint has local enhancement or inhibition effect on the blast damage in the region between the two boreholes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.