Abstract

The three-dimensional nonlinear rupture theory of thin liquid films on a cylinder is presented and studied in this note. The thin liquid film with the effect of intermolecular forces was modeled by a continuum theory, and the three-dimensional evolution equation of liquid films on a cylindrical surface was derived based on a long wavelength approximation. Both linear stability theory and nonlinear numerical method were adopted to solve this evolution equation. The linear stability analysis fails to distinguish the three-dimensional mode from the two-dimensional one in terms of maximum disturbance growth rate and always yields a rupture time larger than the nonlinear solution. In contrast, the nonlinear numerical results clearly show that among three disturbance modes, the two-dimensional annular disturbance one yields the longest rupture time, the two-dimensional axisymmetric disturbance one yields the second longest, and the three-dimensional disturbance one does the shortest. Accordingly, it can be concluded that the rupture status of thin films on cylinder is most likely evolved in the three-dimensional disturbance mode as predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.