Abstract
In this paper, the three-dimensional (3-D) two-temperature modeling on the characteristics of the dual-jet DC arc argon plasmas under different plasma working gas flow rates ranging from 0 to 15 slpm or the chamber pressures increasing from 0.4 to 1.0 atm are conducted at a fixed arc current of 80 A. The modeling results reveal a significant 3-D feature of the temperature and flow fields of the plasma arc-jet due to the declination of the electrodes to each other geometrically, and an obvious deviation from the local thermodynamic equilibrium (LTE) state resulting from the interactions between the high temperature plasma and the cold walls or cold surrounding gas. With other parameters being unchanged, the spatial distributions of the LTE plasma region changed significantly with increasing the plasma working gas flow rate; and the decrease of the chamber pressure leads to the expansion of the high-temperature region and the shrink of the LTE plasma region, which shows a more significant non-LTE feature of the plasma arc-jet. The calculated heavy-particle temperature distributions and the arc voltages are qualitatively consistent with the experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.