Abstract

We present the implementation, validation, and performance of a three-dimensional (3D) Neumann-series approach to model photon propagation in nonuniform media using the radiative transport equation (RTE). The RTE is implemented for nonuniform scattering media in a spherical harmonic basis for a diffuse-optical-imaging setup. The method is parallelizable and implemented on a computing system consisting of NVIDIA Tesla C2050 graphics processing units (GPUs). The GPU implementation provides a speedup of up to two orders of magnitude over non-GPU implementation, which leads to good computational efficiency for the Neumann-series method. The results using the method are compared with the results obtained using the Monte Carlo simulations for various small-geometry phantoms, and good agreement is observed. We observe that the Neumann-series approach gives accurate results in many cases where the diffusion approximation is not accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.