Abstract

This paper reports a facile knife coating route to synthesize Cu-supported Si–C composite as an integrated anode for lithium-ion batteries. The composite displays a three dimensional (3D) network structure constructed by porous skeletons with Si nano-particles encapsulated in carbon matrix. The Cu-supported Si–C composite electrode demonstrates good capacity retention performance and rate performance. It delivers a high capacity of 1429 mA h g−1 at a current density of 1 A g−1 after 100 cycles and a capacity of 677 mA h g−1 at a high current density up to 20 A g−1. There are two facts responsible for its excellent electrochemical performance: (1) 3D network structure produced by volatilization of polymethylmethacrylate (PMMA) improves structure stability of the electrode; (2) abundant tunnels in skeletons made by volatilization of polyethylene glycol (PEG) increases diffusion of lithium-ions in the electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.